臺北巿立師範學院九十二學年度碩士班研究生入學考試試題
所 別:數學資訊教育研究所
科 目:基礎數學(數學教育組)
考試時間:九十分鐘
※ 注意:不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。 (答案請書寫於答案卷上,否則不予計分)
一、微積分(共 6題,合計50分)
1. Evaluate the following limit:
(5分)
2. Find , . (5分)
3. Sketch the graph of . (10分)
4. Use integration to find the volume of a solid ball of radius r . (10分)
5. Find a so that . (10分)
6. Find the power series representations for and specify the radius of convergence. (10分)
二、線性代數(共 4大題,合計50分)
1. (a) If A is invertible, is A + A T always invertible? Why or why not?(5分)
(b) If A is invertible, is A + A always invertible? Why or why not?(5分)
2. Find an orthonormal basis for the subspace of R 4 .(5分)
3. Let .
(a) Find the minimal polynomial of A .(5分)
(b) Find , where m is a positive integer.(5分)
(c) Evaluate .(5分)
4. Let W be the subspace of R 4 spanned by the vectors .
Use the row-echelon form to help you with the computations in (a), (b), and (c) below.
(a) Find a basis for W .(5分)
(b) Find a basis for , the orthogonal complement of W .(5分)
(c) Express b = as a linear combination of the vectors in the bases of W and .(5分)
(d) Find the projection of b on the subspace W .(5分)